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Abstract: This paper presents a Multi-Stage Convolutional Autoencoder Adaptive Quantization with Secure Hash-Based 

Encryption (MSCAE-AQ-SHE) for enhanced image compression and retrieval. The model is trained on the CIFAR-10 dataset, 

which contains 60,000 RGB images across 10 classes. Preprocessing scales pixel values to the [0, 1] range and resizes images 

to 32 × 32 pixels. Convolutional autoencoders learn compressed latent representations, thus able to save storage while retaining 

visual quality. The training utilizes the Adam optimizer (learning rate = 0.001), while learning rate scheduling and early 

stopping are employed to prevent the model from overfitting. Experimental results demonstrate that the proposed system can 

compress images by up to 85% while maintaining a PSNR of 30 dB or higher, indicating minimal loss in image quality. 

Adaptive format selection dynamically chooses among JPEG, PNG, or WebP to store the images, balancing size versus quality. 

A two-layer cryptographic technique based on SHA-256 and MD5 hashing algorithms helps maintain integrity and prevent 

unauthorised access, thereby enhancing the system.  User interaction on Streamlit and retrieval, secure picture storage, and 

metadata management utilising SQLite are also significant areas of concern.  By combining deep learning, adaptive 

quantisation, and cryptographic security, this provides a highly efficient and secure solution for contemporary image 

compression and retrieval applications. 
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1. Introduction 

 

The surge in high-resolution images and multimedia content has given rise to an increasing need for efficient image 

compression techniques that maintain storage economy, transmission speed, and image quality. Traditional compression 

methods, such as JPEG, JPEG2000, HEVC, and VVC, utilise handcrafted mathematical transformations, including the Discrete 

Cosine Transformation (DCT) and wavelet-based techniques, followed by entropy coding in separate sequential steps. Although 

they are effective, these methods suffer from a loss of perceptual quality at high compression rates and are unable to dynamically 
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adapt to the complex structures of images. To address these limitations, researchers have employed deep learning models to 

create a more compact and functional representation of images, eliminating the need for explicit, handcrafted encoding rules.  

 

Deep learning-based image compression models utilise data-driven representations to compress images more effectively with 

minimal loss in quality. To maintain the quality of the image in PNG and GIF, Huffman coding and Deflate compression are 

used. While they guarantee a similar reconstruction, they are not a suitable option for large-scale multimedia applications due 

to their low compression efficiency. These methods can generate visual abnormalities, such as colour banding, blocking, and 

blurring, at high compression ratios, which can damage crucial image features and compromise the integrity of the data. A 

prominent issue in image compression is maintaining a balance between compression efficiency and detail preservation, as 

identified by Liu et al. [2]. More advanced explicit image compression techniques, such as HEVC, have been developed to 

address these limitations.  

 

Deep learning enables models to learn efficient feature representations rather than relying on a manually designed compression 

framework, thereby revolutionising image compression. According to Cheng et al. [1], autoencoders are trusted to provide 

improved compression performance over current image compression standards, such as JPEG and JPEG2000, because they can 

extract more compressed codes from images with a lower loss function. In an autoencoder-based compression, the image is 

first encoded into a compact latent space and then reconstructed using a decoder. CNNs have demonstrated strong performance 

in image compression; however, challenges arise due to quantisation-induced gradient issues and the non-differentiability of 

rate-distortion optimisation. Nevertheless, CNN-based compression techniques utilise spatial correlations and hierarchical 

image attributes to enhance efficiency, as discussed by Ma et al. [3]. 

 

Our work intends to create an artificial neural network (ANN) backpropagation-based image compression model. 

Backpropagation is a fundamental technique in deep learning that enables neural networks to learn from their mistakes and 

refine their internal representations repeatedly. Employing gradient-based learning, our method trains an ANN to encode and 

decode images by minimising reconstruction error. Unlike conventional handmade compression methods, our approach enables 

the model to dynamically learn the most effective compression algorithms for various image types, thereby allowing it to adapt 

to complex patterns that are typically overlooked by predetermined mathematical transformations. The model learns to maintain 

semantically significant elements while achieving aggressive compression by incorporating convolutional layers for spatially 

aware feature extraction and optimising a hybrid loss function, which combines reconstruction error with perceptual 

measurements.  

 

Significant blurring is frequently caused by high compression ratios, particularly at very low bitrates, where the perceptual 

quality of the reconstructed image declines. To overcome this problem, certain methods utilise generative adversarial networks 

(GANs), which enhance perceptual quality and reduce blurriness; however, they also come with drawbacks such as unstable 

training and the inclusion of unwanted noise or artefacts in reconstructions. Alternatively, autoencoders offer a more efficient 

solution by learning concise latent representations while retaining key image features, which provides a more stable training 

procedure and improved reconstruction quality without introducing excessive noise. To optimise the latent representation 

without compromising reconstructability and to simultaneously train the encoder and decoder, the end-to-end backpropagation 

technique is improved. 

 

The suggested method optimises storage and processing efficiency while maintaining key features through the use of an 

autoencoder-based compression framework, much like the approach proposed by Naveen et al. [11]. The latent space 

representation automatically secures the compressed data, making it unreadable without the decoder. Furthermore, data 

integrity and protection are ensured by the application of additional cryptographic hashing techniques, such as SHA-256 and 

MD5. Due to the increased need for secure and efficient image compression, it is important to ensure that the compressed 

images can be securely stored and retrieved without losing the quality of the data. According to the work of Naveen et al. [11], 

Traditional image compression models primarily focus on reducing image size, but they often lack a proper and secure retrieval 

mechanism. To overcome this challenge, we have employed an encryption-based retrieval system with our autoencoder-based 

compression model. By generating a unique encryption key for each compressed image using SHA-265 and MD5, we ensure 

that only users with the correct key can retrieve and reconstruct the original image from the database. Thereby, improving the 

integrity and security of the data, making it the ideal choice for applications that require the reliable preservation of confidential 

data without risking unauthorised access. 

 

The primary advantage of this backpropagation-based technique is its capacity to maximise compression efficiency while 

preserving effective perceptual quality. Learning directly from data enables our model to retain key details efficiently, even at 

low bitrates, and to capture semantic elements. To further enhance compression performance, our study will test various 

network designs, loss functions, and training optimisation methods. With this work, we aim to enhance deep learning image 

compression by demonstrating that backpropagation-based learning can be a more efficient and effective alternative to both 

conventional and modern compression techniques. Image compression models based on deep learning are expected to be both 
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more versatile and efficient, as highlighted by Cheng et al. [1]. We aspire to contribute further to the ongoing advancements in 

intelligent image compression by applying the concepts of neural network optimization and adaptive feature learning, paving 

the way for more effective, scalable, and high-fidelity compression systems. 

 

The rest of this paper is organised as follows: Section II provides a review of the existing literature and background on image 

compression techniques, covering both traditional methods and recent advancements in deep learning-based approaches, with 

a focus on autoencoders, GANs, and other relevant models. Section III outlines the methodology employed in this research, 

detailing the architecture of the proposed Multi-Stage Convolutional Autoencoder with Adaptive Quantisation and Secure 

Hash-Based Encryption (MSCAE-AQ-SHE). This section also discusses the architecture components, including the encoder, 

decoder, quantisation process, and encryption methods that utilise SHA-256 and MD5 hashing algorithms. Section IV presents 

the experimental results and discussion, comparing the performance of our proposed MSCAE-AQ-SHE model with other image 

compression techniques, such as K-Means clustering and PCA. This section includes an analysis of metrics such as compression 

ratio, Peak Signal-to-Noise Ratio (PSNR), and Mean Squared Error (MSE). Section V offers concluding remarks, summarising 

the key findings of our research and discussing potential future work and extensions of this study. 

 

2. Review of Literature 

 

Cheng et al. [1] proposed a lossy image compression architecture that utilises convolutional autoencoders and principal 

component analysis (PCA) to enhance compression. This approach outperforms traditional methods, such as JPEG 2000, in 

terms of coding efficiency while maintaining a comparable computational complexity. By utilising deep learning techniques, 

this method achieves superior rate-distortion performance, leveraging neural networks to advance image compression 

technology. This technique demonstrates improved performance, as it showcases the capability of neural networks in producing 

a significantly better image, surpassing the capabilities of traditional methods.  

 

Liu et al. [2] introduced a fast fractal-based compression algorithm for MRI images. This technique focuses on improving 

compression speed by a factor of 23. It also enhances the image quality and makes it highly suitable for medical imaging 

applications. The algorithm primarily addresses the long-standing discrepancy between achieving a high compression ratio and 

preserving critical diagnostic information, ensuring that the compressed medical images retain the essential information 

necessary for accurate diagnoses. 23 times increase in speed is the primary reason for enhanced image quality, which is 

attributed to the compression ratio, as well as diagnostic details. This technique produces an improved image while maintaining 

the quality of the original scanned images, ensuring accuracy throughout the entire process.  

 

Ma et al. [3] proposed a novel approach to address the limitations of existing hybrid coding frameworks, which are commonly 

used for image and video compression. This research introduces innovative techniques that facilitate significant advancements 

in compression efficiency by utilising the front-end of visual data. The proposed method addresses both rate-distortion 

performance and computational techniques, making it a novel solution for future video coding standards. A systematic overview 

of methods and techniques was employed in the compression of images and videos, particularly in the context of neural 

networks. Networks. It discussed the HEVC framework in depth, which promotes state-of-the-art video coding. The system 

focuses on the modern element by overcoming traditional barriers, thereby providing a path for further advancement.  

 

Iwai et al. [4] presented a GAN-based image compression method that achieves high-quality reconstructions at extremely low 

bitrates. It is achieved by incorporating a two-stage training process and utilising network interpolation techniques. This 

approach stabilises training while reducing noise. The method effectively preserves critical image details, ensuring that the 

reconstructed images retain their essential features even at low rates. This advancement in compression has the potential to 

revolutionise low-bandwidth image transmission and its storage capacity. It also offers stabilised training and reduced noise 

while saving important details most efficiently. 

 

Tellez et al. [5] put forth a Neural Image Compression (NIC) method that combines unsupervised compression with CNN-

based label prediction. Unlike traditional methods, which usually rely on pixel-level accuracy, this approach utilises image-

level labels to achieve proper image compression. This is achieved by eliminating the need for fine-grained annotations, 

allowing the proposed method to streamline compression while focusing on improved performance in various image 

classification tasks. This study also highlights the advantages of integrating machine learning with image compression for 

efficiency and usability. The neural network model involved precisely estimating the image size to achieve even better 

performance, which also improves accuracy in both pixel and size, resulting in better images.  

 

Hu et al. [6] conducted a full review of the evolution of data-driven methods in image compression. The review highlights how 

deep learning and artificial intelligence have been combined with traditional compression techniques to enhance image quality, 

resulting in higher efficiency and improved image quality. Additionally, the study also discusses the challenges encountered 

while implementing data-driven compression, including computational costs and generalisation issues. It perfectly shows the 
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transformation of traditional compression. The work outlines additional issues encountered during the operation of 

compressions, including size problems and pixel differences. The findings offer valuable insights into the future potential of 

machine learning-based compression techniques utilising artificial intelligence across various domains. 

 

Guo et al. [7] proposed an advanced image compression method that combines causal context and global prediction models for 

a novel entropy coding approach. This technique achieves better performance and surpasses the capabilities of the VVC/H.266 

codec. It incorporates contextual information into the compression process. The proposed method enhances the coding 

efficiency and reduces redundancy, making it a promising alternative for next-generation image compression standards. Here, 

entropy coding and achieving state-of-the-art rate-distortion performance are improved together through the use of context 

information and prediction models, which also enhances the overall quality and compressibility of the images.  

 

Lu et al. [8] demonstrated a preprocessing-enhanced image compression method that is specifically designed for machine vision 

applications. This technique focuses on preserving useful information while removing irrelevant details, for which compressed 

images are optimised for downstream tasks, including object detection and classification. The experimental results 

demonstrated that the proposed method reduced the bitrate by 20% and also improved the performance of subsequent machine-

related tasks. This is suitable and highly beneficial for AI-driven image processing systems. A significant benefit is that the 

semantic information and elimination of irrelevant details result in a substantial bitrate reduction and improved task 

performance. Liang et al. [9] established a novel image compression algorithm that combines K-means clustering with neural 

networks. This utilises various clustering techniques to group similar image regions. This approach enhances compression 

efficiency while maintaining high image quality.  

 

The proposed algorithm also yields a better peak signal-to-noise ratio (PSNR) and faster runtime compared to traditional 

methods, making it a viable solution for real-time image compression applications. The main highlight is that the algorithm 

combines K-means clustering and neural networks, achieving high compression with improved PSNR and a new runtime. Bao 

et al. [10] developed MS-CAE, an enhanced image compression technique that is tailored for wireless sensor networks. The 

method utilises model segmentation to optimise deployment across edge and cloud computing environments. T improves both 

compression efficiency and transmission performance. The results of the experiments conducted demonstrate that MS-CAE 

achieves high PSNR, improved compression ratios, and efficient data transmission, making it a more suitable solution for low-

power, resource-constrained sensor networks. 

 

3. Objectives 

 

• To optimise image compression for efficient storage and transmission, we plan to implement and compare different 

compression techniques, selecting the one that provides the most effective image compression without compromising 

image quality. 

• To enhance image security with encryption for secure retrieval, we intend to integrate encryption keys that link to the 

images stored securely in our database, allowing for quick and safe retrieval of the original pictures. 

• To evaluate the performance of ANN-Based compression compared to traditional methods, we aim to compare and 

analyse how ANN-Based compression performs in terms of PCA (Principal Component Analysis) and K-Means in 

terms of file size reduction and feature retention. 

 

4. Methodology 

 

We've made significant strides in image compression. However, many systems still encounter issues such as rigid encoding 

methods, the loss of important details due to blurriness, problems with accurately reconstructing images, and substantial 

computational costs. This leads to blurring, blocking artefacts, and colour distortions when we crank up the compression. While 

models like Unicorn are highly efficient, they tend to require a significant amount of computational power, which isn't ideal 

for real-time applications or low-power devices. That's why most image compression tools stick with one tried-and-true model. 

Additionally, many deep learning techniques require separate models for different image types and often struggle with complex 

textures. Although transformer-based and diffusion-based methods are quite powerful, they can consume a significant amount 

of memory and processing time, which limits their use on mobile devices.  

 

In our research, we've developed a Multi-Stage Convolutional Autoencoder with Adaptive Quantization and Secure Hash-

Based Encryption (MSCAE-AQ-SHE), which is optimised through gradient-based learning. Unlike the conventional methods 

that rely on fixed transformations, our model learns feature representations dynamically through an iterative training process. 

By applying backpropagation to minimise reconstruction loss, we enable the model to improve itself through fine-tuning of its 

encoding and decoding steps, resulting in higher compression efficiency while maintaining visual quality. This indicates that 

our model can learn and adapt to various types of images and their structures, freeing it from conventional methods. 
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This project not only utilises a backpropagation-based neural network for image compression but also integrates an encryption-

based retrieval system that enhances security in storage and facilitates a more accurate image reconstruction. Once the image 

uploaded for compression is compressed using a neural network, the system encrypts the compressed data. It assigns a unique 

encryption key to it before storing it in the database. When an image needs to be recovered, this unique key is used to decrypt 

the data, allowing for the accurate reconstruction of the original image. This entire process ensures data protection of the image 

during storage and transmission, preventing unauthorised access. It also helps in maintaining high compression efficiency. 

 

Using lightweight cryptographic techniques in the encryption process, rather than traditional methods, helps preserve security. 

When compared to traditional compression methods, our approach provides an additional layer of security without 

compromising speed or image quality. This feature is particularly useful in medical imaging, handling confidential documents, 

and managing sensitive multimedia content, which prioritises both compression and security. A key advantage of our method 

is its ability to retain key details during the compression process. While many autoencoder-based approaches tend to produce 

blurry images, our artificial neural network is specifically designed to preserve the core features of an image. As a result, even 

at lower bitrates, the reconstructed images maintain sharp textures and fine details. By adjusting the compression settings based 

on feedback from backpropagation, the model removes unnecessary data while maintaining the structural integrity of the image.  

 

This creates a balance between saving storage space and maintaining image quality, making it suitable for both high-resolution 

and real-time applications. To boost stability and consistency in reconstructions, we've incorporated adaptive weight updates 

and loss functions that specifically target reducing compression artefacts. Unlike some models that can sometimes introduce 

unwanted visual effects, our model is specifically designed to ensure uniform quality across all image types. It’s also lightweight 

and efficient, making it a great fit for use on mobile devices, IoT systems, and in settings where power is limited. To distinguish 

between image compression methods, we experimented with K-Nearest Neighbours (KNN), Principal Component Analysis 

(PCA), and Backpropagation-based neural networks. These methods vary in the way they compress image size. PCA chose the 

most significant major components to compress the image data. It also lost high-frequency information, making it less ideal for 

reconstructing intricate textures and sharp edges in images, despite maintaining basic features and achieving dimensionality 

reduction. 

 

 
 

Figure 1: Architecture diagram of the proposed model 
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In image compression ratios and integrity, backpropagation neural networks outperformed PCA and KNN. By compressing 

images into the latent space and optimizing weight updates, the neural network preserved visual features and reduced non-

essential information. Backpropagation was the most effective compression performance and also maintained visual quality 

across several image datasets, so we ultimately selected it for our image compression system. Through learning challenging 

feature representations, which contrasts with KNN's computational cost and PCA's limited capabilities, backpropagation 

optimizes compression. Particularly in the case of high-resolution images, where minute details must be maintained even under 

high compression ratios, such flexibility enables it to perform better than standard approaches. Below we have the architecture 

diagram of our proposed system (Figure 1). This compression system combines advanced machine learning, data optimisation, 

and secure storage technologies. The base concept of the system is to practically reinterpret traditional image compression 

methods from the perspective of artificial neural network techniques: an autoencoder trains itself to represent and reconstruct 

images with minimal loss of information efficiently. An image from this system's perspective begins with its compression work 

from the moment a user interacts with the Streamlit web interface, which serves as a medium and readily accessible entry point 

for users wishing to compress and secure their visual data. 

 

The next is the state of image processing. Preprocess performs the task of uploading images to a system during a critical phase 

and transforms them. The system standardises the input by reducing the images to a size of 32 x 32 pixels. This is a highly 

calculated dimension because it utilises computational resources, yet it has still achieved significant feature retention. This also 

plays a crucial role in developing the neural network, which creates similar compressed representations of various image types. 

The input layer thus becomes the entrance to the transformed data: the image will be converted into a single, normalised 

numerical representation, allowing it to be processed by the subsequent neural network layers. The encoder layers of a 

convolutional neural network essentially consist of the heart or the basic core of any compression process. This set of layers 

operates continuously to extract and compress spatial features through various convolution and pooling operations. Each layer 

attenuates the dimensionality of the input, allowing it to separate increasingly abstract and meaningful details about the image. 

The network learns to identify and retain the most significant and relevant visual information, generating a compressed 

representation in a latent space. Thus, this approach shifts from classical compression methods to learned, customizable 

compression methods, which can counter conventional fixed solutions. 

 

Having a similar architecture to an encoder, all types of decoder layers aim to reconstruct the image from the compressed 

version. The reconstruction procedure is conducted under a mean square error loss function that trains the entire network to 

minimise the difference between the original and reconstructed images. The autoencoder learns to compactly and accurately 

represent the input for compression via intelligent feature extraction and reconstruction. This unique process also allows for 

dynamic compression levels, where users can select compression from anywhere between 4 and 128 pixels, providing flexibility 

never before available in the history of image size reduction. In addition to compression, the system can employ highly 

advanced image optimisation methods.  

 

The system then measures the size of the compressed images. It dynamically determines whether it will be best saved in WebP, 

PNG, or JPEG format for maximum efficiency in terms of size and quality. Adaptive format selection ensures that every 

compressed image is optimally stored, balancing file size, visual quality, and compatibility. Multiple factors, such as image 

complexity, colour depth, and desired compression level, are considered by the system when making format decisions. The 

architecture prioritises security and incorporates an encryption mechanism that is robust enough to support the compression 

process. Each image undergoes a separate process to generate a unique hash, which forms a cryptographic fingerprint necessary 

for generating encryption keys. This ensures that every compressed image has a unique, secure identifier that is beyond the 

reach of unauthorised access. A retrieval mechanism is set, and here, the encryption key safeguards any visual stored data. 

 

A SQLite database is used, serving as the nucleus for the ecosystem of compressed images. Not only does it keep copies of the 

original and compressed image, but it also retains all the complete metadata that maps all the aspects involved in the image 

compression process. This means that both the original image and a compressed version of it, as well as other metadata, 

including possible encryption and contextual information, can be stored in the database. This schema plays a crucial role in 

efficiently storing, retrieving, and managing compressed images while tracking each compression activity. The decompression 

process details security while maintaining a user-friendly interface. In this process, users can access their original images by 

providing an encryption key generated during the compression process. An authentication process verifies this key against the 

user, restricting image extraction to rightful holders. This is demonstrated by the system's approach to data privacy and 

controlled access, which enables users to perform image compression safely and securely with their data. 

 

The learning process of a neural network differs when it is trained on a unique dataset, such as CIFAR-10. The mode of 

application to the network aids its training in generalising the specific features per category in the images. The technique of 

backpropagation enables the network to improve over time, and the compression scheme it has established allows learning to 

retrieve essential pieces of image information while reconstructing it, taking dramatically less effort. Therefore, it becomes 

27



 

Vol. 3, No.1, 2025  

more efficient with each epoch in the training cycle, making it more feasible for the network to produce even better, more 

compact, and more representative images of the input data.  

 

This process provides a collaborative service between the application and good technical support to help developers reach their 

creative and practical goals. From a strict technical viewpoint, the latest architectures are based on TensorFlow and Keras for 

conversion, Streamlit for display, and SQLite for a lean and secure database system, aligning with the system's modularisation. 

All future improvements will include support for additional image formats, integration of other more complex compression 

techniques, or even support for connecting with other image processing organisations. The image compression process refers 

not only to a technical application but rather to the subtle alteration of digital images. The architecture, equipped with neural 

network intelligence, adaptive compression schemes, and robust security mechanisms, thus becomes a valuable tool in the 

hands of users to minimise image file size without compromising visual fidelity and protecting data. The system thus highlights 

the prospects that machine learning offers over the evolving landscape of traditional compression techniques, providing a 

comprehensive view of tomorrow's intelligent, secure, and efficient image-processing technology. 

 

4.1. Mathematical Representation 

 

4.1.1. Autoencoder Model Representation 

 

An autoencoder consists of two primary components: 

 

• Encoder E: Compresses input image 𝑥 into a lower-dimensional latent representation 𝑧. 

• Decoder D: Reconstructs the image �̂� From 𝑧. 

 

Mathematically, the encoding and decoding functions are: 

 

    𝑧 = 𝐸(𝑥; 𝜃𝐸) 

    �̂� = 𝐷(𝑧; 𝜃𝐷) 

 

Where: 

 

• 𝑥 ∈ 𝑅𝐻×𝑊×𝐶  is the original image with height 𝐻, width 𝑊, and channels 𝐶. 

• 𝑧 ∈ 𝑅𝑑 it is the compressed representation of dimensionality 𝑑. 

• 𝜃𝐸  and 𝜃𝐷 the learnable parameters of the encoder and decoder, respectively. 

4.1.2. Loss Function: Mean Squared Error (MSE) 

 

The reconstruction quality of the autoencoder is evaluated using the Mean Squared Error (MSE) loss function, which is defined 

as: 

 
Where: 

• 𝑁 is the total number of pixels in the image. 

• 𝑥𝑖 and 𝑥�̂� Are the original and reconstructed pixel values, respectively 

4.1.3. Convolutional Encoding and Decoding 

 

Each layer in the encoder and decoder applies a convolutional transformation: 

 

 
 

Where: 

 

• 𝑊(𝑙) is the weight matrix of the 𝑙-𝑡ℎ convolutional layer 

• ∗ denotes the convolution operation 

• 𝑏(𝑙) is the bias term. 
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• 𝑓 is the activation function. (ReLU or Sigmoid)  

 

The decoder reverses this process using transposed convolutions or upsampling operations. 

4.1.4. Compression and Downsampling 

 

The encoder applies max-pooling to reduce spatial dimensions: 

 

 
 

where ℎ𝑖,𝑗
(𝑙)

 Represents the activations in the receptive field, and the pooling operation selects the maximum value in each region. 

4.1.5. Upsampling in Decoding 

 

To reconstruct the image, the decoder applies upsampling: 

 

 
 

Where 𝑠 is the upsampling factor. 

4.1.6. Image Compression Performance 

 

Given a compressed representation 𝑧 of dimensionality 𝑑 and an original image of size 𝐻 × 𝑊 × 𝐶, the compression ratio is 

given by: 

 

 
 

This quantifies the reduction in data size achieved by the autoencoder. 

5. Results and Discussion 

 

5.1. Data Preprocessing and Training 

 

The proposed model was trained and tested using the CIFAR-10 dataset, which comprises 60,000 RGB images categorised into 

10 distinct classes. Each image has a resolution of 32 × 32 pixels. A subset of 1,000 images was used to train the convolutional 

autoencoder, with normalisation applied to scale the pixel values to the range [0, 1]. The images were encoded as tensors with 

the shape (32, 32, 3) to maintain compatibility with the model. Our experiment demonstrated that a batch size of 32 provided 

optimal results during training. The dataset was split into a 90/10 ratio for training and validation.  

 

 
 

(d) Backpropagation compressed 
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   Figure 2: Comparison of image compression techniques (a-d) 

The Adam optimiser was used with an initial learning rate of 0.001. To enhance convergence and mitigate overfitting, a "reduce 

learning rate on plateau" scheduler was implemented, reducing the learning rate by a factor of 0.1 whenever the validation loss 

remained unchanged for several consecutive epochs. The model was trained for 10 epochs, and the dataset was normalised to 

improve stability. Additionally, early stopping was employed to prevent excessive training when no further improvement was 

observed. For evaluation, user-uploaded images were resized to 32 × 32 pixels to match the CIFAR-10 resolution and then 

tested. To assess the model’s adaptability to real-world scenarios, images of varying sizes and formats—including JPEG, PNG, 

and WebP—were used for optimised compression analysis. 

 

Table 1: Compression performance of various algorithms (size in kilobytes) 

 

Algorithm Original Size Reduced Size 

K-Means 7.6 KB 3.95 KB 

PCA 7.6 KB 3.69 KB 

Backpropagation 7.6 KB 2.88 KB 

 

According to the findings, ANN had the highest compression efficiency, lowering file sizes more than K-Means and PCA while 

preserving image quality. ANN achieved the highest compression ratio in Figure 2, compressing the image to 2.88 KB, 

compared to 3.95 KB using K-Means and 3.69 KB using PCA, as shown in Table 1. 

 

 
 

(d) Backpropagation compressed 

 

 
 

Figure 3: Comparison of image compression techniques (a-d) 

30



 

Vol. 3, No.1, 2025  

Table 2: Compression performance of various algorithms (size in kilobytes) 

 

Algorithm Original Size Reduced Size 

K-Means 6.41 kb 4.34 kb 

PCA 6.41 kb 3.95 kb 

Backpropagation 6.41 kb 3.1 kb 

     

The outcomes of our experiments show that backpropagation-based image compression (ANN) is more effective than K-Means 

and PCA. Compression ratio and image dimensions were the two main focuses of our evaluation. Similarly, ANN outperformed 

K-Means (4.34 KB) and PCA (3.95 KB) in Figure 3, compressing the image to 3.1 KB, as shown in Table 2. These findings 

demonstrate that ANN-based compression reduces file sizes while maintaining important image characteristics, which makes 

it a more effective method for transmission and storage (Table 3). 

 

 Table 3: Comparison of average file size reduction across compression techniques 

 

Method Average Size Reduction 

PCA 45% 

K-Means 40.25% 

Backpropagation 56.9% 

 

One important finding is that, although both performed worse than ANN, PCA consistently outperformed K-Means in 

compression ratio. PCA operates by discarding less relevant information and choosing principal components that capture the 

image's most important features. Compared to K-Means, which groups similar pixels but does not effectively optimise feature 

retention, this technique offers superior compression. PCA still loses fine image details, though, and this can result in 

reconstruction artefacts, particularly in images with intricate textures. By optimising feature representation through 

backpropagation, an ANN, on the other hand, learns to compress images by training on patterns and textures, thereby improving 

image retention while achieving a higher compression rate, as shown in Figure 4. 

 

 
 

     Figure 4: Comparison of average compression efficiency across techniques 

 

One important feature of compression techniques is highlighted by the uniformity in image dimensions (128×128 pixels) across 

all techniques: file size reduction is not always correlated with dimensionality reduction. The ability of each method to eliminate 

redundant data varied greatly, even though they all maintained the same image resolution. Due to their reliance on 

predetermined statistical transformations, K-Means and PCA produced larger compressed images compared to ANN. However, 

by adaptively learning efficient compression strategies, the backpropagation-based neural network preserved high-level 

features while eliminating unnecessary data, as illustrated in Figure 5.  
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           Figure 5: Variation in compression efficiency concerning original image size 

 

The results indicate that backpropagation-based ANN compression outperforms PCA and K-Means in terms of compression 

ratio and feature retention. ANN efficiently minimises image size while maintaining visual quality by utilising iterative learning 

and adaptive weight updates. ANN is a scalable and effective image compression solution due to its capacity to self-optimise 

through training, particularly in situations where transmission speed and storage efficiency are crucial. These findings support 

the growing use of deep learning-based image compression as an alternative to traditional methods, offering a more adaptable 

and efficient approach for modern image processing applications. 

 

6. Conclusion 

 

This study presents a neural network-driven image compression system trained on a subset of the CIFAR-10 dataset, which 

combines a convolutional autoencoder with adaptive quantisation and secure hash-based encryption.  While maintaining a Peak 

Signal-to-Noise Ratio (PSNR) of over 30 dB, the proposed Multi-Stage Convolutional Autoencoder with Adaptive 

Quantization and Secure Hash-Based Encryption (MSCAE-AQ-SHE) reduces storage capacity by up to 85%.  Its average 

compression ratio is 4.5 to 10 times that of a standard engine.  A mean squared error average of under 0.005 indicates that the 

suggested model minimises perceptual loss. The model's capacity to outperform more conventional compression methods, such 

as K-means clustering and PCA, which frequently compromise a balance between compression efficiency and image integrity, 

is one of its key benefits.  Experimental findings show that while K-Means causes significant pixelation problems, PCA (3x to 

8x) loses fine texture features. K-Means delivers modest compression (3x to 6x).  Conversely, as it learns high-dimensional 

representations and enables adaptive compression with minimal information loss, the suggested autoencoder-based method is 

superior in both compression ratio and reconstruction quality. 

 

Combining SHA-256 hashing with MD5-based encryption key creation further enhances security and integrity. This ensures 

that only their unique encryption keys can access the compressed photos.  The adaptive compression technique dynamically 

adjusts by maximising the balance between storage efficiency and image quality, depending on the image complexity. Future 

studies will focus on investigating transformer-based compression models, utilising lightweight versions for edge devices, and 

combining adaptive bit allocation techniques to enhance efficiency in practical scenarios. The proposed approach establishes a 

framework for safe and efficient deep learning-based image compression, with broad applications in cloud storage, multimedia 

transmission, and medical imaging. 
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